

Electric 2&3 Wheelers and Climate Change Mitigation: Role and Measurement

Global Conference on Electric 2&3 Wheelers October 9, 2023

Alvin Mejia Urban Electric Mobility Initiative (UEMI) Mobility Hub of the Urban Living Lab Center (ULLC) a UN-Habitat Collaborating Center

IS DOQUERT-DIRE

Urban Living Lab Center

- The Urban Living Lab Center provides a space for collaboration among implementation-oriented projects in the field of urban climate action.
- First collaboration center of UN-Habitat
- UEMI as the mobility hub of the Urban Living Lab Center

Urban Living Lab Center

AMERICAS

Escuela Politécnica Nacional, Ecuador
 Universidad de Buenos Aires, Argentina
 University Pereira, Colombia
 Universidad De la Republica Uruguay, Uruguay

EUROPE

5 Blekinge Institute of Technology, Sweden
6 Technical University of Denmark, Denmark
7 RWTH Aachen University, Germany

8 Frankfurt University of Applied Sciences, Germany
9 Technische Hochschule Ingolstadt, Germany
10 University of Florence, Italy

ASIA

11 University of Kathmandu, Nepal
12 De La Salle University, Philippines
13 University of the Philippines, Philippines
14 Asian Institute of Technology, Thailand
15 Indian Institute of Technology, India
16 University of Transport Technology, Vietnam

AFRICA

17 University of Rwanda, Rwanda

- 18 Cape Town University, South Africa
- 19 Akenten Appiah-Menka University of Skills Training and Entrepreneurial Development, Ghana

X of

20 Mohammed VI Polytechnic University, Morocco

SOLUTIONSplus: (Integrating Urban Electric Mobility Solutions in the Context of the Paris Agreement, the Sustainable Development Goals and the New Urban Agenda)

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 875041

http://www.solutionsplus.eu/ https://emobility.tools/

- Transportation-related greenhouse gas (GHG) emissions accounted for 23% of energyrelated GHG emissions
- Transport GHG emissions growth has remained roughly constant (2% per year) from 2010-2020, in contrast to the decline in the emissions growth in power sector (from 2.3% to 1.0%) and industry (from 3.4% to 1.4%)

The International Energy Agency (IEA) estimates that road transportation contributes ~75% of the total transport emissions, and up to 18% of the total fuel combustionrelated emissions globally. It is interesting to note that these contributions are much higher when we look at the developing countries, particularly in Africa and in Asia (IEA, 2022).

•

Road Transport GHGs

Economic growth → higher
 purchasing power → enables higher
 vehicle ownership and/or higher
 utilization of vehicles → increased
 transport GHG growth

- Significance of 2 and 3 wheelers in many developing countries, particularly in Asia; increasing relevance in African region
- Lower acquisition, operation costs; higher levels of service due to nimbleness; various use cases and flexibility in terms of applications

Urban Passenger Kilometres by Vehicle Type

electrive

Infrastructure Battery Commercial Vehicles Fleet

Politics

Taiwan to ban ICE car & scooter sales as of 2040

BUSINESS NEWS

Indonesia Eyes Broadening Electric Motorcycle Subsidy Program to Encourage Adoption

X f 🖸 🛪 🖂 Policy Circle Bureau — June 13, 2023

④ 2 Min Read

Electric two-wheelers adoption is on the rise despite challenges such as dependence on component imports, subsidy cuts, and absence of vehicle recycling and scrappage policies.

Ļ India: The country is making giant strides in electric vehicles adoption as it looks to combat climate change and cut reliance on fossil fuels. Recent data from the Vahan Dashboard indicates that four Indian states

Lifecycle Emissions

•

•

situation

Electric 2 and 3 wheelers can

depending on the actual

have varying emissions impacts

 "MRV" is one of the key tools in establishing transparency regarding climate change mitigation efforts

Why?

- Increases transparency / clarity of project effectiveness
- Opportunities for accessing finance
- Enhances planning, implementation, and future project/ policy formulation
- Promotion of effective measures

MRV: Before, During, After the Intervention

Sto X

Emissions Mitigation in Transport: Avoid, Shift, Improve

Fig. 5: Classic approach to avoid, shift and improve in the transport sector. Source: GIZ, Sustainable Transport: A Sourcebook for Policy-makers in Developing Cities, Module Se: Transport and Climate Change

The impacts of the electrification of 2 & 3 wheelers need not be limited to the one-is-to-one replacement of a conventional 2 / 3 wheeler with an electric one.

•

• towards reduced emissions

Shifting transport activity (e.g. from more energy or emissions intensive vehicles/modes such as cars)

Shifting transport activity

to e 2&3 wheelers

Electric 2&3 wheelers can be used to enhance the overall levels and quality of service of public transport systems to encourage shifting

Supporting the shift to

more efficient modes

Replacing vehicles with 2&3 wheelers can result in energy efficiency which can then lead to reduced emissions

Improving energy

efficiency

Electric 2&3 wheelers

Replacing ICE with E → reduced emissions intensity

Reducing the emissions

intensity

- Causal chain analysis refers to the systematic exploration of cause-and-effect relationships that link interventions (like policies or projects) to their expected or observed impacts (e.g. GHG impacts).
- Identifying the boundaries (temporal, geographic, thematic) is a crucial step
- The pathways by which higher level/macro programs impact emissions may be more difficult to map
- When in doubt:
 - Are they relevant?
 - Are the impacts significant?
 - Is it possible to measure?

- Also, ask yourself this what's the purpose of the MRV exercise that you are embarking on?
- Different mechanisms have different requirements
 - Avoid paralysis by analysis

Climate Mechanism	Reporting Requirements for Transport Mitigation Actions	Frequency of Reporting	Reported To	Verification Requirements for Transport Mitigation Actions	Frequency of Verification	Verified By
Clean Development Mechanism (CDM)	Project Design Document (PDD) with baseline emissions and estimated reductions	Every 1-2 years	Executive Board of the CDM	Verification by an independent designated operational entity (DOE) accredited by the CDM	Every 1-2 years	Independent DOE accredited by the CDM
Joint Implementation (JI)	Monitoring Report with emission reduction data	Every 1-2 years	Joint Implementation Supervisory Committee (JISC)	Verification by an independent designated operational entity (DOE) accredited by the JISC	Every 1-2 years	Independent DOE accredited by the JISC
Global Environment Facility (GEF)	Project Progress Report with transport mitigation actions	Varies by project	GEF Secretariat and project stakeholders	Monitoring and evaluation based on agreed indicators	Varies by project	GEF Independent Evaluation Office
Clean Technology Fund (CTF)	Project Progress Reports with transport mitigation actions	Varies by project	CTF Trust Fund Committee and project stakeholders	Monitoring and evaluation based on agreed indicators	Varies by project	Independent evaluatio experts selected by the CTF Trust Fund Committee
Nationally Appropriate Mitigation Actions (NAMAs)	NAMA-specific reporting formats with transport mitigation actions	Varies by country and NAMA	Relevant government agencies and international stakeholders	Monitoring and evaluation based on NAMA-specific requirements	Varies by country and NAMA	Varies by country and NAMA
Mitigation Facility (MF)	Project-specific reporting formats with transport mitigation actions	Varies by project	Implementing entity and relevant stakeholders	Monitoring and evaluation based on project-specific requirements	Varies by project	Implementing entity or independent evaluator
International Climate Initiative (IKI)	Project-specific reporting formats with transport mitigation actions	Varies by project	IKI Secretariat and project stakeholders	Monitoring and evaluation based on project-specific requirements	Varies by project	Implementing entity or independent evaluators

Urban Living Lab

MRV : Application to Different "Mechanisms"

5

• Carbon credits : Carbon Markets

- Mandatory Carbon Markets
 - Clean Development Mechanism
 - Joint Implementation
- Voluntary Carbon Markets
 - Gold Standard
 - Verified Carbon Standard
- Climate Finance Support Mechanisms
 - Mitigation Facility
 - GEF
 - IKI
 - Climate Investment Funds
 - Green Climate Funds
 - Climate bonds
- National reporting: National Communications to the UNFCCC; Biennial Update Reports

Differences in...

- Requirements in terms of
 - Accuracy of estimates
 - Monitoring, reporting, and verification requirements
 - Assessment periods
 - Scope
 - Defining boundaries
 - "Types" of emissions and emissions saved
 - Estimating BAU
 - Others

Methodologies: Examples

Differences in :

- Applicability
- Logic of emission reduction
- Formulae
- Monitoring methods

Selected Examples: CDM Methodologies

Category	Methodology	Purpose Shifting travel to more sustainable modes		
Bus systems	AM0031, ACM0016			
Mass rapid transit systems	ACM0016, AMS-III.U	Shifting travel to more sustainable modes		
Energy efficiency	AMS-III.AA, AMS-III.AP, AMS-III.C, AMS-III.AT	Improve the efficiency of modes		
Fuel switch (bio-CNG)	AMS-III, AP	Improve the efficiency of modes		
Fuel switch through retrofit	AMS-III.5	Improve the efficiency of modes		
Transportation of cargo	AM0090	Shifting travel to more sustainable modes		
Biofuel for transport	AM0047, ACM0017, AM0089, AMS-III.AK, AMS-III.T	Improve the efficiency of modes		

Source: Romero. (2013).

Use vehicle activity

based model and

country-specific

factors e.g. COPERT

Use default factors

and disaggregation

by technology.

Box 2: Tier 2

Box 1: Tier 3

• Flexibilities are normally embedded, which can be used depending on the circumstances

Box 3: Tier 1

Methodologies and Tools

A St

- IPCC Guidelines on National Greenhouse Gas Inventories
- GHG Protocol
- MOVES, COPERT ("intensity" and "fuel" types of measures)
- CDM tools
- GEF Guidelines for Estimating GHG Impacts of Transportation Projects
- Transport Emission Evaluation Model for Projects (TEEMP) : C
 - Sketch models for different types of projects
 - Avoid
 - Shift
 - Improve
- Micro/meso/macro transport simulation tools
- HDM-4 (road maintenance, improvements)
- MYC Calculator
- UNEP E-mobility Calculators
- Others...

uts				
Project Name				
Location				
Details				
Cumulative length of BRTS Constructed (km)	25	25	40	
BRT Ridership	23		40	
I have the ridership figures/day ('000). I would	like to input it d	irectly		
BRT Ridership ('000)/day				
	55.00	120.00	140.00	

	Mode share in the corridor if the BRT is not implemented 🛛 🕕			
e	Car	10%	10%	10%
	2-wheeler	20%	20%	20%
Ĭ.	Taxi	10%	10%	10%
E.				
public	3-wheeler	10%	10%	10%
	Bus	50%	50%	50%
	Mini-bus			
	TOTAL	100%	100%	100%

BRT Scorecard (BROWSE OVER THE PARAMETERS TO SEE GUIDANCE ON HOW TO SCORE) Click here to go to the BRT Scorecard/Standard write-up

D E

Component	Existing System	BRT System	Score per component			
ervice Planning						
Off-vehicle fare collection and fare verification	0	0	7			
Multiple routes use same BRT infrastructure	4	4	4			
Peak period frequency	4	4	4			
Off-peak frequency	3	3	3			
Limited and local stop services	0	3	3			
System control center	0	3	3			
Routes in top 10 demand corridors	0	2	2			

https://www.thegef.org/sites/default/files/publications/TEMP-models-2014.zip

 Upcoming publication on Guidelines for MRV Emissions Reduction of E-mobility Policies and Projects (focus on E2&3 wheelers in Africa and Asia)

Guidelines for Measuring, Reporting, and Verifying (MRV) Emissions Reductions of E-mobility Policies and Projects In Focus: E-2 & 3 wheelers in Africa and Asia

山。 赤 方

Reporting and Verification

- Who to report to/ who verifies
 - Domestic / local stakeholders
 - International donors
 - Review committees / evaluation departments
- What to report/what is to be verified
 - Depends on the objectives/ who we are reporting to
 - High level/long-term estimates to detailed estimates and input/monitored parameters
 - Different metrics
 - Intervention metrics
 - Progress metrics
 - GHG metrics
 - Sustainable development metrics

Urban Living Lab

MRVing Mitigation Interventions: in a Nutshell

Overall Steps	Detailed Step							
Define policy/action	Define policy or action to be assessed							
Identify effects	Identify potential GHG effects of the policy/action; include them in the map of the causal							
	chain							
	Define the GHG assessment boundary around significant effects; identify the sources/sinks in							
	the boundary							
Measure / Estimate	Estimate baseline emissions for affected sources or sinks in the boundary							
Effects	Ex-ante assessment; Estimate policy scenario emissions for affected sources or sinks; subtract							
	baseline to estimate GHG effect							
	Identify key performance indicators							
	Monitor over time							
	Ex-post assessment; Estimate policy scenario emissions for affected sources or sinks; subtract							
	baseline to estimate GHG effect							
	Assess uncertainty							
Verify	Verify results							
Report	Report results and methodology used							

Institutions

- MRV systems are dependent on institutional arrangements
- Institutional set-ups vary depending on the existing structures ; most of the time, coordination is the missing link
- In some cases, (e.g. at national level), existing structures (institutions and data systems) need to properly accommodate new data brought about by electrification

Source: Clean Air Asia

Summary

- Electric 2 and 3 wheelers an essential piece in mitigating climate change globally
- E2&3 wheelers can result in reducing GHG emissions through a variety of different pathways
- MRV is essential for ensuring transparency, enhancing implementation, informing future action, and accessing climate finance
- Knowing the MRV landscape, rules, and specific applications are important if you want to balance robustness with practicality and purpose.
- Institutions and institutional set-ups are important in sustaining MRV systems that provide the intended outcomes

Alvin Mejia

Director, Analysis and Impact

UEMI Secretariat I Urban Electric Mobility Initiative (UEMI)

Kopenhagener Straße 47 10437 Berlin, Germany

Mobility Hub of the Urban Living Lab Center (ULLC) a UN-Habitat Collaborating Center

ULLC Mobility Hub @UEMI I Gutenbergstr. 71-72, 14469 Potsdam, Germany

www.living-lab.center | | www.uemi.net | alvin.mejia@uemi.net

A Sta

Go to slido.com #2571 362

17:35 📞 🛛 🗭 🖵 \cdots		*	\$ ₩Fi ® 🛜 💷			
	≏ ₀ app.sli.do		+	Ð	:	

slido

8

 $\left(\rightarrow \right)$

t de

Go to slido.com #2571 362

enter code here

 \bigcirc

By using Slido you accept the Acceptable Use

Your last event

MRV

2571362 8 - 10 Oct 2023

About Slido Slido Privacy Cookie Settings

<

≡ 0

ROUNDTABLE DISCUSSION: INSTITUTIONAL SET-UP OF MRV SYSTEMS

Objectives

- To understand the unique institutional setups of MRV systems across different countries.
- To identify best practices, challenges, and opportunities in these setups in the context of electric two and three-wheelers.
- To foster collaboration and shared learning among participating countries pertaining to MRV systems, particularly from the lens of electrifying two and three wheelers.

Distinguished Representatives from

Ms. Valérie Ongolo Zogo

Ministry of Transport

Cameroon

Dr. Raymund Abad

Clean Air Asia Philippines

Mr. Peeraway Saisirirat ENTEC Thailand

Ms. Lu Thi Yen University of Transport Technology

Vietnam

Quick presentation from the panelists:

- 1. Please give us a quick overview of the electric 2 and 3 wheeler landscape in your country?
- 2. Describe the institutional setup of the MRV system in your country (and kindly highlight specific institutions and elements that are critical in relation to MRVing mitigation efforts related to 2 and 3 wheelers).

Panel and Q&A

